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Abstract: In this study, we propose Selective Intersection Flow (SIF), a lightweight optical 

flow algorithm that enhances efficiency and accuracy by filtering out non-contributive 

pixels. SIF, derived from the differential category of algorithms, computes optical flow by 

analyzing intersections of equations from selected pixels rather than solving for all pixels. 

It replaces costly warping with a minimal computational procedure for initial flow esti-

mate and employs a sliding window for optimized single-core performance. SIF runs 1.7–

1.8× faster and achieves 1.2–1.4× higher accuracy than the single iteration of Lu-

cas-Kanade method, showing promise for real-time micro drone navigation. 
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1. Introduction 

Optical flow estimation is central to image processing, with modern techniques us-

ing deep learning and Convolutional Neural Networks [1] to deliver high accuracy. 

However, these methods demand intensive GPU resources and high power consumption 

to achieve real-time performance. Traditional approaches, in contrast, offer a trade-off: 

the differential methods provide high speed but moderate accuracy, while 

block-matching methods [2] are more accurate yet slower. 

This study aims to develop an optical flow algorithm for obstacle avoidance in micro 

drone navigation. Modern methods exceed the computational capacity of our in-tended 

platform, and while traditional differential techniques are well-suited for real-time use, 

they often compromise accuracy. The differential approach assumes that the displace-

ment of the image between two consecutive frames is small and approximately constant 

within a neighborhood of the point (x, y) under consideration. This assumption leads to 

the classic optical flow equation ItIyVyIxVx −=+ . This is a linear equation of two 

variables, Vx and Vy represent the components of the optical flow vector in the x and y 

directions, while Ix, Iy, and It are the spatial and temporal gradient at (x, y, t). For each 

pixel, there is an infinity number of solutions for the flow (Vx and Vy). By assuming 

neighboring pixels share the same flow and solving the simultaneous equations within a 

small window, the Lucas-Kanade algorithm [3] yields an estimated flow that can be re-

fined through iterative processing. Enhanced versions employ pyramidal structures [4] 

and techniques like patch-and-stride [5] to lower computational costs. 

Our study aims to develop an optical flow algorithm that is more accurate and 
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faster than the one-iteration Lucas-Kanade (simpleLK) variant. Optical flow techniques 

can also be classified as sparse or dense. Given that the motion in drone footage is pri-

marily due to the camera rather than moving objects, our approach is designed to pro-

duce dense optical flow. 

2. Materials and Methods 

2.1 Basic Concept 

Our study was inspired by observing the lines formed by ItIyVyIxVx −=+ . In a 

5×5 window, 25 lines emerge on the Vx, Vy plane; while most lines converge near the true 

optical flow, some deviate significantly (Fig. 1(a)). Removing these outliers reduces both 

computational load and errors (Fig. 1(b)). 

When enough qualified lines remain, we use a lightweight method to select the best 

ones and compute their intersections. The geometric center of these intersections ap-

proximates the true optical flow. Noticing that some intersections stray from the esti-

mated flow (Fig. 1(b)), we apply a filter to remove them before the final calculations. The 

SIF algorithm achieves this efficiently in eight non-iterative steps (Fig. 1(c)). 

 

 

 

 

 

 

 

            (a) (b)                              (c) 

Figure 1. The basic concept of the proposed SIF algorithm. (a) For simplicity, only 5 lines from 5 

neighboring pixels are shown. The green lines are close to the true optical flow (black dot), while 

the red line is an outlier and needs to be removed. The red dot indicates the estimated flow by the 

five lines. (b) After the outlier removal, the four lines form six intersections, giving rise to a new 

estimate (red dot). However, two intersections (orange dots) are far from the true optical flow and 

should be removed. The geometric center (purple dot) of the remaining four intersections repre-

sents a good estimate of the true optical flow. (c) The flow chart of the SIF algorithm. 

2.2 SIF Step 1 - Blurring 

Blurring is a pre-processing step used in many optical flow algorithms. The optical 

flow algorithm can better adapt to larger optical flows by incorporating pixels from a 

larger area. In SIF, unweighted square window blurring is applied with a window size 

of 5x5 pixels. 

2.3 SIF Step 2 – Gradient Computation 

Considering the gradient Ix (or Iy) at position (x, y) is typically calculated using 

values at x+1 (or y+1) and x–1 (or y–1), we also compute the gradient at t using values at 

t+1 and t–1(Eq. (2.1)), rather than the traditional t+1 and t as in most optical flow algo-

rithms. This symmetric temporal and spatial gradient can enhance the accuracy of opti-

cal flow estimates. We can further improve the computation of gradients Ix and Iy by in-

cluding the second terms of the Taylor expansion as shown below (Eq. (2.2) and Eq. 

(2.3)). 

2/))1,,()1,,(( −−+= tyxItyxIIt                                    (2.1) 

12/))2()2()1(8)1(8( −++−−−+= xIxIxIxIIx                       (2.2) 

12/))2()2()1(8)1(8( −++−−−+= yIyIyIyIIy                       (2.3) 
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2.4 SIF Step 3 -- Intercept Filtering 

The filtering process removes lines that could distort the optical flow computation 

by eliminating those far from the true solution in the Vx–Vy plane. In practice, since the 

true optical flow is unknown, we begin by pre-estimating a potential flow—if unavaila-

ble, the coordinate origin serves as a reference. 

Instead of calculating the computationally expensive point-to-line distance, we use 

the line’s intercepts with the coordinate axes as a surrogate. The absolute value of an in-

tercept approximates the distance from the reference point, while its sign indicates the 

quadrants through which the line passes, an information useful in a later step. 

A key parameter, InterceptFilter (CF), determines qualification: if both the absolute 

x- and y-intercepts are below CF, the line is kept (Fig. 2(a)); otherwise, it is discarded. 

When a pre-estimated optical flow is available, shifting the coordinate origin to that flow 

markedly improves accuracy (Fig. 2(b)). 

 

 

 

 

 

 

             (a)                     (b) 

Figure 2. The concept of intercept filtering. For simplicity, only four lines are shown. The black 

and purple dots represent the true and pre-estimated optical flow, respectively. The yellow dots 

represent CF. (a) When using the origin as the reference point, lines A and B are qualified, while 

lines C and D are unqualified. (b) When shifting the origin to the pre-estimate, lines C and D are 

qualified, while lines A and B are unqualified, resulting in a more accurate optical flow estimation. 

2.5 SIF Step 4 -- Slope Filtering 

This step involves another key parameter: SlopeFilter (abbreviated as SF), which is 

used to eliminate lines with slopes that are nearly horizontal or vertical. For example, 

when SF = 10, lines with absolute slopes greater than 10 or less than 0.1 are deemed un-

qualified. The detailed rationale for slope filtering will be explained in Section 2.7 . 

2.6 SIF Step 5 – Sequential Line Selection 

If a sufficient number of lines pass the intercept and slope filters, we then select a 

subset to reduce the intersection computation load in a cost-effective manner. Two pa-

rameters guide this process: MinLine and MaxLine. If qualified lines number fewer than 

MinLine, the optical flow is deemed unreliable and (0, 0) is returned; if there are more, 

only up to MaxLine lines are chosen. 

The selection prioritizes lines originating near the center pixel, based on a fixed 

prearranged order that eliminates extra distance calculations (Fig. 3(a) and Fig. 3(b)). To 

further improve quality, we ensure diversity in slopes by dividing the plane into three 

sections for positive slopes and three for negative slopes (Fig. 3(c)). Qualified lines are 

assigned to their respective slope queues and then selected in a round-robin fashion. 

2.7 SIF Step 6 -- Intersection Filter 

We observed that intersections between two lines with similar slopes can stray far 

from the main cluster (Fig. 1(b)). Consequently, we accept only intersections formed by 

one positive-slope and one negative-slope line. This rule, along with prior slope filtering, 

ensures sufficient slope difference and reduces the number of calculated intersections. 
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Accordingly, during line selection, we count positive- and negative-slope lines sepa-

rately relative to the MinLine and MaxLine thresholds. 

 

 

 

 

 

 

 

      (a)              (b)                (c) 

Figure 3. Sequential line selection. (a) Distance of each pixel from the center pixel. (b) The pixels 

are order based on their distances from the center pixel. (c) The slope filtering stage removes the 

slopes that fall in red areas. The green area with a positive slope is divided into three sections: A, B, 

and C. The green area with a negative slope is divided into three sections: D, E, and F. 

2.8 SIF Step 7 -- Density Augmentation 

After processing every pixel, a dense optical flow field is theoretically obtained. 

However, due to filtering and the MinLine requirement, some regions may lack com-

puted flow, resulting in lower density than methods like simpleLK. To remedy this, 

post-processing increases density: for any pixel without computed flow, the average of 

the flows from the pixels in the surrounding region (defined by the parameter win-

dowsize) is used as the optical flow for that pixel. 

2.9 SIF Step 0 -- Guessing Pre-flow 

In the Intercept Filter section, the term “pre-estimate optical flow” refers to a quick 

initial guess that can significantly boost accuracy if computed with minimal cost. We ex-

plored three methods for generating this pre-estimate: 

1. Temporal Smoothing: If optical flow changes smoothly, use the flow from the pre-

vious frame. 

2. Low-Resolution Estimate: Compute the optical flow on a downscaled image 

(without a pre-estimate), then upscale it for the full-resolution computation. 

3. Quadrant Penalty: Analyze each line’s slope and intercept to determine which 

quadrant is least likely to contain the true flow. Assign penalties based on this 

analysis, then adjust the qualified range of CF according to the quadrant with the 

lowest total penalty. 

For temporally smooth flows, the first method offers the best speed and accuracy. 

For rapid motions—such as from a fast-moving camera—the low-resolution approach 

(method 2) yields better results, while the third method is useful in other scenarios. 

2.10 Evaluation 

The performance of our optical flow algorithm is evaluated using three metrics: 

endpoint error (EPE), normalized endpoint error (NEPE), and density (den). Among 

these, NEPE is the primary metric, which is a scalar calculated by dividing EPE with the 

length of ground truth. 

2.11 Dataset 

MidAir Dataset is used in the present study [6]. It contains 5 videos that simulate an 

observer (camera) flying in different environments under four weathers, with 325 frames 

in each video, and ground truth of optical flow between each frame. 
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3. Results 

3.1. Windowsize of Blur & Improved Grdient 

 Blurring primarily improves the algorithm's ability to handle larger optical flows. 

We tested window sizes from 3 to 9 and optical flow lengths from 0.5 to 4.0 pixels using 

both simpleLK and SIF (Fig. 4(a) & 4(b)). To generate flows of specific lengths, we 

translated an image in three directions and used the average NEPE as the performance 

metric for each parameter combination. By combining blurring with enhanced gradient 

computation, both algorithms can reliably process flows up to 3 pixels. Because accuracy 

improvements plateau with window sizes over 5, we set windowsize = 5 in subsequent 

experiments.  

 

 

 

 

 

 

(a)                            (b)                             (c) 

Figure 4. Experimental results of five different blurring window sizes over eight translation dis-

tances. (a) Results for simpleLK. (b) Results for SIF. (c) The performance of different ways of opti-

cal-flow pre-estimation. 

3.2 Value of Other Parameters 

Through similar experiments as above, we have found the optimal set of parame-

ters : Minline=3, Maxline=7, CF=1.5 (with pre-estimate) or 8.5 (without pre-estimate), 

SF=10.  

3.3 Different Guesses of Pre-flow 

We evaluated various optical-flow pre-estimation methods using a video segment 

from the MidAir Dataset. Five methods were tested—three from section 2.9, a baseline 

with no pre-estimate (all zeros), and simpleLK for comparison. Each method was ap-

plied to five video segments with nine frames per segment (45 data points total). The 

results (Fig. 4(c)) confirmed the effectiveness of our pre-estimation strategies. 

3.4 Performance on MidAir Dataset 

We visualized the optical flow direction and magnitude using colors and compared 

the original images from the MidAir Dataset, the ground truth, and the results of the SIF 

algorithm both before and after density enhancement (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Visualized performance of SIF algorithm on a section of MidAir Dataset. 
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3.5 Comparison of Speed, Error, and Density 

To compare the speed of the algorithms, we ran the C++ implementation repeatedly 

10 times on an Intel i7 single-core CPU and took the average runtime (excluding image 

reading, error calculations, etc.) for each frame. The results confirmed that SIF is faster 

than simpleLK (Table 1). The SIF variation here uses low resolution as the pre-estimate. 

Table 1. Comparison of simpleLK and SIF. 

Metric simpleLK SIF 

NEPE (ratio) 0.432 (1) 0.333 (0.771) 

Time(ms) (ratio) 157.6 (1) 84.4 (0.536) 

Density (ratio) 0.970 (1) 0.786 (0.810) 

4. Discussion 

In this study, we introduce Selective Intersection Flow (SIF), a lightweight optical 

flow algorithm that balances efficiency with accuracy. Unlike traditional differential 

methods, SIF filters out non-contributory pixels and computes flow by analyzing inter-

sections of filtered equations rather than solving equations for every pixel, thereby re-

ducing computational overhead. We further enhance efficiency by replacing the costly 

warping step in pyramidal techniques with a lightweight initial flow estimate. SIF runs 

1.7–1.8× faster and achieves 1.2–1.4× higher accuracy than a single iteration of the 

Lu-cas-Kanade method.  

The primary application for the SIF algorithm is obstacle avoidance in micro drones. 

Given their low flight speeds and limited camera resolution, its inability to process flows 

larger than 3 pixels and its somewhat lower density are acceptable drawbacks. None-

theless, there is still potential to improve accuracy, speed, and flow density. A further 

limitation is the algorithm’s inflexibility; its symmetric computation of It prevents the 

use of warping, which means iterative or pyramidal techniques cannot be applied to 

boost accuracy or handle larger flows. 

In conclusion, the proposed SIF algorithm provides a lightweight method for opti-

cal flow estimation. Its integration into an optical flow-based obstacle avoidance system 

for micro drones highlights its potential for real-time navigation. 
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